
Murasame’s Contest 1 Editorial

01.29.2026

Contents

1 Steps to Reach 2

2 Single Replacement 3

3 LCM Lollipops 4

4 Pythagorean Triples 6

5 Color Merge 7

Murasame’s Contest 1 Editorial CONTENTS

Notes
Some parts of this editorial are translated and polished by Gemini 3.

Page 1; Total 9

Murasame’s Contest 1 Editorial 1 STEPS TO REACH

A Steps to Reach
We are looking for the smallest non-negative integer k such that A+ 3k ≥ B.
Rearranging the inequality for k: 3k ≥ B − A =⇒ k ≥ B−A

3

Since k must be an integer, the minimum k is the ceiling of that division: k =
⌈
B−A
3

⌉
.

In integer arithmetic, ⌈x
y
⌉ can be calculated as (x + y ‐ 1) // y.

Page 2; Total 9

Murasame’s Contest 1 Editorial 2 SINGLE REPLACEMENT

B Single Replacement
Let S be the initial sum of the array. If we replace Ai with X, the new sum S ′ is

S ′ = S − Ai +X.
We require S ′ ≡ 0 (mod M), which implies S−Ai+X ≡ 0 (mod M) =⇒ X ≡ Ai−S

(mod M).
Let the required remainder be R = (Ai − S) (mod M).
Any valid X must satisfy X = k · M + R for some integer k. Additionally, we are

constrained by 0 ≤ X ≤ K.
Algorithm:

1. Calculate the total sum S.
2. Iterate through every index i from 1 to N .
3. Calculate the target remainder R = (Ai − S) (mod M).
4. We need to find X ∈ [0, K] such that X ≡ R (mod M) that minimizes |X − Ai|.
5. The candidates for best X are usually:

• The smallest valid value: R (if R ≤ K).
• The value closest to Ai: specifically the multiples of M plus R that are just above

or below Ai.
• The largest valid value ≤ K.

6. Check all valid candidates for a specific i, update the global minimum difference, and
print the result.

Page 3; Total 9

Murasame’s Contest 1 Editorial 3 LCM LOLLIPOPS

C LCM Lollipops
Analysis:

Let DP [i] be the maximum score possible using the first i candies.

DP [i] = max
0≤j<i

{DP [j] + lcm(Aj+1, . . . , Ai)}

A naive computation takes O(N2), which is too slow.
The Optimization:
Instead of looking back at all j, we iterate forward from i to i+ 1. We maintain a list of

”Active Segments”.
An active segment represents a potential last lollipop ending at the current index. Each

segment needs to store only two values:

1. Current LCM: The LCM of the current block ending at i.
2. Best Score: The max total score achieved if we end the partition right before this block

starts, plus the LCM of this block.

Let active_list be a list of pairs {current_lcm, current_score}.
When we move from Ai to Ai+1:

1. Start a new block: We can always start a fresh lollipop containing just Ai+1. The score
for this option is max_score_so_far + Ai+1.

2. Extend existing blocks: For every pair {L, val} in active_list, extending the
block changes its LCM to lcm(L,Ai+1). The new score becomes val ‐ L + new_lcm.

Key Merge Step:
Many different starting points j will eventually converge to the same LCM value as we

extend to the right. If multiple segments result in the same LCM, we only keep the one with
the highest score. This keeps the list size small.

Proof by Gemini:
The efficiency of this solution relies entirely on the size of the active_list. If the list

stays small, the algorithm is fast.
Theorem:
At any index i, the number of distinct LCM values for all possible subarrays ending at i

(i.e., lcm(Aj . . . Ai) for 1 ≤ j ≤ i) is O(log(MAX_ANS)).
Proof:

Page 4; Total 9

Murasame’s Contest 1 Editorial 3 LCM LOLLIPOPS

1. Sequence Definition:
Consider the sequence of LCMs formed by subarrays ending at i as we extend the left
endpoint j backwards from i to 1.
Let Lj = lcm(Aj, Aj+1, . . . , Ai).

2. Divisibility Property:
Notice that Lj+1 = lcm(Aj+1, . . . , Ai).
Then Lj = lcm(Aj, Lj+1).
By definition, Lj+1 must divide Lj.

3. Growth Rate:
Because Lj+1 divides Lj, there are only two possibilities for step j:

• Case A: Lj = Lj+1. The LCM value does not change.
• Case B: Lj > Lj+1. Since Lj+1 is a divisor of Lj and they are not equal, Lj must

be at least twice Lj+1 (since the smallest integer multiplier > 1 is 2).

Lj ≥ 2 · Lj+1

4. Bounding the Size:
We only store distinct LCM values in our list.
Let the distinct values be v1, v2, . . . , vk in increasing order.
From logic above, vm+1 ≥ 2 · vm.
The maximum possible LCM value we care about is bounded by the problem constraint
on the answer (1018), or realistically the LCM of all elements. Even if we don’t bound it
by the answer, it is bounded by the product of primes fitting in the integer type.
The number of times you can double a number before exceeding 1018 is log2(10

18) ≈ 60.
5. Conclusion:

The size of active_list never exceeds ≈ 60.
In each of the N steps, we iterate through this list, performing GCD/LCM operations.

Total Operations ≈ N × 60

For N = 200, 000, this is roughly 1.2 × 107 operations, which easily fits within the 1-2
second time limit (typically handling ∼ 108 operations).

Page 5; Total 9

Murasame’s Contest 1 Editorial 4 PYTHAGOREAN TRIPLES

D Pythagorean Triples
A brute force O(N2) iterating a and b will time out given N = 106. We need a more

mathematical approach.
Rearrange the equation: a2 = c2 − b2 = (c− b)(c+ b).
Let x = c− b and y = c+ b; then a2 = x · y.
Since b, c are integers, x and y must have the same parity (both even or both odd), because

their sum (x+ y) = 2c and difference (y − x) = 2b must be even.
Algorithm:

1. Iterate a from 1 to N .
2. Factorize a2 into pairs (x, y) such that x · y = a2 and x < y.
3. To factorize efficiently, we can precompute smallest prime factors (Sieve) for numbers up

to N . Note that we need factors of a2, which are just the factors of a with exponents
doubled.

4. For each valid pair (x, y) with matching parity: c = (x+ y)/2, b = (y − x)/2

5. Check constraints: c ≤ N and b > a (to ensure strict ordering and avoid duplicates).
6. Store valid triples and sort them at the end.

This problem have other solutions, feel free to share yours.

Page 6; Total 9

Murasame’s Contest 1 Editorial 5 COLOR MERGE

E Color Merge

1. Key Observations

The Target Value
The problem asks us to make all elements identical. Since the only allowed operation is

to change a value x to an adjacent value y, we cannot introduce new numbers into the array.
The final value (let’s call it T) must be one of the values initially present in the array. Since N

is small (N ≤ 300), we can iterate through every distinct value in the array and try solving the
problem assuming T is the final value. The answer is the minimum cost over all valid choices
of T .

Transforming a Segment
Suppose we have a contiguous segment of numbers and a neighbor immediately outside

this segment that already has the value T . We want to convert this entire segment to T .
What is the optimal strategy?
It is never optimal to change a number to a value larger than itself before changing it to

T (this only increases the product cost).
The optimal strategy for a segment is:

1. Identify the minimum value, m, within that segment.
2. Convert all other numbers in the segment to m. This effectively ”flattens” the segment.
3. Once the entire segment consists of the value m, convert each m to T using the neighbor

that is already T .

Why is this optimal?
By converting to the minimum value m first, we minimize the intermediate costs. Any

transition involving a value larger than m would incur a higher product cost.

2. Calculating Costs

Let’s formalize the cost to convert a range A[l . . . r] into T , assuming we have a helper T
adjacent to the range (e.g., at l − 1 or r + 1).

1. Flattening Cost:
We change every A[k] in the range (l ≤ k ≤ r) to m, where m = min(A[l . . . r]).

Costflat =
r∑

k=l

A[k]×m if A[k] ̸= m

0 otherwise

Page 7; Total 9

Murasame’s Contest 1 Editorial 5 COLOR MERGE

2. Transformation Cost:
After flattening, we have (r − l + 1) elements of value m. We need to change each of
them to T .

Costtransform = (r − l + 1)×m× T

(Note: If m = T , this cost is 0).

Total Cost for range = Costflat + Costtransform.

3. DP

We cannot simply run a DP from 1 to N because we need a valid ”source” of T to start
the transformations. We use an Anchor/Pivot approach.

For a fixed target T , we iterate through every index p such that A[p] == T originally. We
treat A[p] as the immutable anchor. We then solve two independent subproblems:

1. Convert the left prefix A[1 . . . p− 1] to T .
2. Convert the right suffix A[p+ 1 . . . N] to T .

DP State:
Let L[i] be the minimum cost to convert the prefix A[1 . . . i] to T , such that A[i] ends up

as T (and can act as a helper for the left side).
Transition:
To compute L[i], we iterate over a split point j < i. This assumes A[1 . . . j] is already

converted. We then convert the segment A[j + 1 . . . i] to T using A[j] (which is T) as the
helper.

L[i] = min
0≤j<i

{L[j] + Cost(j + 1, i)}

We define R[i] similarly for the suffix, iterating backwards.

4. Algorithm

1. Precompute FlattenCost[i][j] and MinVal[i][j] for all 1 ≤ i ≤ j ≤ N . This
takes O(N3).

2. Collect all unique values from input A.
3. For each unique ‘target‘:

• Compute array L using DP: O(N2).

Page 8; Total 9

Murasame’s Contest 1 Editorial 5 COLOR MERGE

• Compute array R using DP: O(N2).
• Find the best pivot p (where A[p] == target): Answer = min(L[p−1]+R[p+1]).

4. Output the global minimum.

5. Complexity

• Precomputation: O(N3).
• DP Calculation: There are at most N unique targets. For each target, the DP is

O(N2). Total is O(N3).
• Total Complexity: O(N3).

Given N ≤ 300, N3 ≈ 2.7× 107, which fits comfortably within the time limit.

Page 9; Total 9

	Steps to Reach
	Single Replacement
	LCM Lollipops
	Pythagorean Triples
	Color Merge

